Chromosomal integration of LTR-flanked DNA in yeast expressing HIV-1 integrase: down regulation by RAD51
نویسندگان
چکیده
HIV-1 integrase (IN) is the key enzyme catalyzing the proviral DNA integration step. Although the enzyme catalyzes the integration step accurately in vitro, whether IN is sufficient for in vivo integration and how it interacts with the cellular machinery remains unclear. We set up a yeast cellular integration system where integrase was expressed as the sole HIV-1 protein and targeted the chromosomes. In this simple eukaryotic model, integrase is necessary and sufficient for the insertion of a DNA containing viral LTRs into the genome, thereby allowing the study of the isolated integration step independently of other viral mechanisms. Furthermore, the yeast system was used to identify cellular mechanisms involved in the integration step and allowed us to show the role of homologous recombination systems. We demonstrated physical interactions between HIV-1 IN and RAD51 protein and showed that HIV-1 integrase activity could be inhibited both in the cell and in vitro by RAD51 protein. Our data allowed the identification of RAD51 as a novel in vitro IN cofactor able to down regulate the activity of this retroviral enzyme, thereby acting as a potential cellular restriction factor to HIV infection.
منابع مشابه
Cellular co-factors of HIV-1 integration.
To achieve productive infection, the reverse transcribed cDNA of human immunodeficiency virus type 1 (HIV-1) is inserted in the host cell genome. The main protein responsible for this reaction is the viral integrase. However, studies indicate that the virus is assisted by cellular proteins, or co-factors, to achieve integration into the infected cell. The barrier-to-autointegration factor (BAF)...
متن کاملActivity of recombinant HIV-1 integrase on mini-HIV DNA.
Integration of the human immunodeficiency virus type 1 (HIV-1) cDNA into the genome of a human cell is an essential step in the viral replication cycle. Understanding of the integration process has been facilitated by the development of in vitro assays using specific oligonucleotides and recombinant integrase. However, understanding of the biology of retroviral integration will require in vitro...
متن کاملPeptides Derived from HIV-1 Integrase that Bind Rev Stimulate Viral Genome Integration
BACKGROUND The human immunodeficiency virus type 1 (HIV-1) integrase protein (IN), catalyzes the integration of viral DNA into the host cell genome. IN catalyzes the first step of the integration process, namely the 3'-end processing in which IN removes a pGT dinucleotide from the 3' end of each viral long terminal repeat (LTR). Following nuclear import of the viral preintegration complex, the ...
متن کاملMicrobial Natural Product Alternariol 5-O-Methyl Ether Inhibits HIV-1 Integration by Blocking Nuclear Import of the Pre-Integration Complex
While Highly Active Antiretroviral Therapy (HAART) has significantly decreased the mortality of human immunodeficiency virus (HIV)-infected patients, emerging drug resistance to approved HIV-1 integrase inhibitors highlights the need to develop new antivirals with novel mechanisms of action. In this study, we screened a library of microbial natural compounds from endophytic fungus Colletotrichu...
متن کاملEfficient and Specific Internal Cleavage of a Retroviral Palindromic DNA Sequence by Tetrameric HIV-1 Integrase
BACKGROUND HIV-1 integrase (IN) catalyses the retroviral integration process, removing two nucleotides from each long terminal repeat and inserting the processed viral DNA into the target DNA. It is widely assumed that the strand transfer step has no sequence specificity. However, recently, it has been reported by several groups that integration sites display a preference for palindromic sequen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic Acids Research
دوره 34 شماره
صفحات -
تاریخ انتشار 2006